Assignment 15

Due: 11:00pm on Friday, December 4, 2009
Note: To understand how points are awarded, read your instructor's Grading Policy.
[Return to Standard Assignment View]

Electricity and Water Analogy

Learning Goal: To understand the analogy between water pressure, water flow, voltage, and current
As suggested by the fact that we call both currents, the flow of charged particles through an electrical circuit is analogous in some ways to the flow of water through a pipe.

When water flows from a small pipe to a large pipe, the flow (measured, for instance, in gallons per minute) is the same in both pipes, because the amount of water entering one pipe must equal the amount leaving the other. If not, water would accumulate in the pipes. For the same reason, the total electric current I is constant for circuit elements in series.

Water pressure is analogous to total electric potential (voltage), and a pump is analogous to a battery. Water flowing through pipes loses pressure, just as current flowing through a resistor falls to lower voltage. A pump uses mechanical work to raise the water's pressure and thus its potential energy; in a battery, chemical reactions cause charges to flow against the average local electric field, from low to high voltage, increasing their potential energy.

Part A

Consider the following water circuit: water is continually pumped to high pressure by a pump, and then funnelled into a pipe that has lower pressure at its far end (else the water would not flow through the pipe) and back to the pump. Two such circuits are identical, except for one difference: the pipes in one circuit have a larger diameter than the pipes in the other circuit. Through which circuit is the flow of water greater?

ANSWER: Small pipe

- Large pipe

Correct

The cross sectional area of the pipe is analogous to the area of a wire: the smaller the area the higher the resistance and the more the pipe/wire impedes flow. If the change in pressure (proportional to the potential energy per unit mass) of water traveling through two pipes is the same, the flow will be less through the pipe with smaller cross sectional area. The electrical analog is Ohm's law $I=\frac{V}{R}$, where resistance R is inversely proportional to the area
of a wire/resistor.

Part B
Now consider a variant on the circuit. The water is pumped to high pressure, but the water then faces a fork in the pipe. Two pipes lead back to the pump: large pipe L and small pipe S. Since the water can flow through either pipe, the pipes are said to be in parallel:

The overall flow of water that enters the system before the
fork is equal to \qquad

Hint B. 1 Water conservation

> Hint not displayed

ANSWER: the flow through pipe L.

- the sum of the flows through L and S .
the average of the flows through L and S .

Correct

Part C

What can you say about the drop in potential energy (per unit mass or volume) of water traveling through either pipe?

ANSWER:
The drop is greater for pipe L.
The drop is greater for pipe S .

- The drop is the same for both pipes.

Correct

The pressure is equal at the top of both pipes (to the pressure created by the pump) and at the bottom of both pipes (taken to be zero). So the pressure drop across each pipe is equal; only the flows are different. This circuit is the analog of resistors in parallel, where the voltage is the same for both resistors, but the currents differ if the resistances are unequal.

Part D

Consider a new circuit: water is pumped to high pressure and fed into only one pipe. The pipe has two distinct segments of different diameters; the second half of the pipe has a smaller diameter than the first half:

Which of the following statements about the flow and change
in pressure through each segment is true?

ANSWER: The flow through each segment is the same as the overall flow; the change in pressure through each segment is the same as the overall change.

- The flow through each segment is the same as the overall flow; the sum of the changes in pressure through each segment equals the overall change.
The sum of the flows through each segment equals the overall flow; the change in pressure through each segment is the same as the overall change.
The sum of the flows through each segment equals the overall flow; the sum of the changes in pressure through each segment equals the overall change.

Correct

This circuit is the analog of resistors in series. Each segment of pipe has the same amount of water flowing through it, but a different pressure change. The overall resistance of the pipe is the sum of the resistances of each segment: $R_{\text {net }}=R_{1}+R_{2}$.

Tactics Box 32.1 Using Kirchhoff's Loop Law

Learning Goal: To practice Tactics Box 32.1 Using Kirchhoff's Loop Law.
Circuit analysis is based on Kirchhoff's laws, which can be summarized as follows:

- Kirchhoff's junction law says that the total current into a junction must equal the total current leaving the junction. - Kirchhoff's loop law says that if we add all of the potential differences around the loop formed by a circuit, the sum of these potential differences must be zero.

Although Kirchhoff's junction law is needed only when there are one or more junctions in a circuit, Kirchhoff's loop law is used for analyzing any type of circuit, as explained in the following tactics box.

TACTICS BOX 32.1 Using Kirchhoff's loop law

Draw a circuit diagram. Label all known and unknown quantities.
2. Assign a direction to the current. Draw and label a current arrow I to show your choice.

- If you know the actual current direction, choose that direction.
- If you don't know the actual current direction, make an educated guess. All that will happen if you choose wrong is that your value for I will end up negative.

3. "Travel" around the loop. Start at any point in the circuit; then, go all the way around the loop in the direction you assigned to the current in Step 2. As you go through each circuit element, ΔV is interpreted to mean

$$
\Delta V=V_{\text {downstream }}-V_{\text {upetream }}
$$

- For an ideal battery with current in the negative-to positive direction: $\Delta V_{\text {hat }}=+\mathcal{E}$.
- For an ideal battery in the positive-to-negative direction (i.e., the current is going into the positive terminal of the battery): $\Delta V_{\text {bat }}=-\mathcal{E}$.

For a resistor: $\Delta V_{\mathrm{R}}=-I R$

\longrightarrow Trave
Potential increases

Potential decreases

Potential decreases

Express your answer in volts.		
ANSWER:	$\Delta V={\underset{C o r r e c t}{ }}_{1.0}$	

Kirchhoff's Current Rule Ranking Task

The placement of resistors in a circuit is one factor that can determine the current passing through the resistor. You will be
given three circuits, and for each circuit you will be asked to compare the current through the various resistors.
In each of the circuits in Parts A to C , all resistors are identical.
Part A
Rank the resistors in the figure below (A to C) on the basis of the current that flows through them.
Hint A. 1 Kirchhoff's current rule for circuit junctions
Hint not displayed

Rank from largest to smallest. To rank items as equivalent, overlap them.
ANSWER:

View
Correct

Part B
Rank the resistors in the figure below (A to C) on the basis of the current that flows through them.

Hint B. 1 Kirchhoff's current rule for circuit junctions
Hint not displayed
Rank from largest to smallest. To rank items as equivalent, overlap them.
ANSWER:

View
Correct

Part C

Rank the resistors in the figure below (A to D) on the basis of the current that flows through them.

Brightness of Light Bulbs Ranking Task

Now consider what happens when a switch in the circuit is opened.

Part C
What happens to bulb C?
Hint C. 1 How to approach this part

Hint C. 2 Find the current in bulb C earlier
Hint not displayed
Hint C. 3 Find the current in bulb C now
Hint not displayed
ANSWER: It gets dimmer.

- It gets brighter.

There is no change.

Correct

This is why appliances in your home are always connected in parallel. Otherwise, turning some of them on or off would cause the current in others to change, which could damage them.

\quad Heating a Water Bath
In the circuit in the figure, a 20-ohm resistor sits inside 115 g
of pure water that is surrounded by insulating Styrofoam.

Problem 32.9

A standard $100 \mathrm{~W}(120 \mathrm{~V})$ lightbulb contains a 7.60 cm -long tungsten filament. The high-temperature resistivity of tungsten is $9.0 \times 10^{-7} \Omega \mathrm{~m}$.

Part A

What is the diameter of the filament?
ANSWER:

24.6

$\underset{\text { Correct }}{24.6} \mu \mathrm{~m}$

[^0]| wire, using all the aluminum that will dissipate 9.0 W when connected to a 2.9 V battery. |
| :--- |
| Part A
 What length will you choose for your wire?
 Express your answer using two significant figures.
 ANSWER: $L=\mathbf{5 . 2}$ Correct
 Part B
 What diameter will you choose for your wire?
 Express your answer using two significant figures.
 ANSWER: $\quad d=\mathbf{0 . 4 5}$
 Correct mm |

Force on Moving Charges in a Magnetic Field

Learning Goal: To understand the force on a charge moving in a magnetic field.
Magnets exert forces on other magnets even though they are separated by some distance. Usually the force on a magnet (or piece of magnetized matter) is pictured as the interaction of that magnet with the magnetic field at its location (the field being generated by other magnets or currents). More fundamentally, the force arises from the interaction of individual moving charges within a magnet with the local magnetic field. This force is written $\vec{F}=q \vec{v} \times \vec{B}$, where \vec{F} is the force, q
is the individual charge (which can be negative), \vec{v} is its velocity, and \vec{B} is the local magnetic field.
This force is nonintuitive, as it involves the vector product (or cross product) of the vectors \vec{v} and \vec{B}. In the following questions we assume that the coordinate system being used has the conventional arrangement of the axes, such that it satisfies $\hat{x} \times \hat{y}=\hat{z}$, where \hat{x}, \hat{y}, and \hat{z} are the unit vectors along the respective axes.

Three right-handed coordinate systems

Let's go through the right-hand rule. Starting with the generic vector cross-product equation $\vec{A}=\vec{B} \times \vec{C}$ point your forefinger of your right hand in the direction of \vec{B}, and point your middle finger in the direction of \vec{C}. Your thumb will then be pointing in the direction of \vec{A}.

Part A

Consider the specific example of a positive charge q moving in the $+x$ direction with the local magnetic field in the $+y$ direction. In which direction is the magnetic force acting on the particle?
Express your answer using unit vectors (e.g., $\hat{x}-\hat{y}$). (Recall that \hat{x} is written x_{-}unit.)
ANSWER: Direction of $\vec{F}_{\text {mag }}=\hat{z}$ Correct

Part B

Now consider the example of a positive charge q moving in the $+x$ direction with the local magnetic field in the $+z$ direction. In which direction is the magnetic force acting on the particle?
Express your answer using unit vectors.
ANSWER: Direction of $\vec{F}_{\text {mag }}=\begin{gathered}-\hat{y} \\ \text { Correct }\end{gathered}$

Part C

Now consider the example of a positive charge q moving in the $x y$ plane with velocity $\vec{v}=v \cos (\theta) \hat{x}+v \sin (\theta) \hat{y}$ (i.e., with magnitude v at angle θ with respect to the x axis). If the local magnetic field is in the $+z$ direction, what is the direction of the magnetic force acting on the particle?

Hint C. 1 Finding the cross product

Charge Moving in a Cyclotron Orbit

Learning Goal: To understand why charged particles move in circles perpendicular to a magnetic field and why the frequency is an invariant.
A particle of charge q and mass m moves in a region of space where there is a uniform magnetic field $\vec{B}=B_{0} \hat{z}$ (i.e., a
magnetic field of magnitude B_{0} in the $+z$ direction). In this
problem, neglect any forces on the particle other than the magnetic force.

Part A	
At a given moment the particle is moving in the $+x$ direction (and the magnetic field is always in the $+z$ direction). If q is positive, what is the direction of the force on the particle due to the magnetic field?	
Hint A. 1 The right-hand rule for magnetic force	
Hint not displayed	
ANSWER:	$0+x$ direction
	- $-x$ direction
	+ $+y$ direction
	(-) $-y$ direction
	+ $+z$ direction
	$-z$ direction
	Correct
Part B	
This force will cause the path of the particle to curve. Therefore, at a later time, the direction of the force will	
ANSWER:	
	have a component
	\bigcirc remain perpendicul
	have a component a
	first have a compon
	Correct
Part C	
The fact that the magnetic field generates a force perpendicular to the instantaneous velocity of the particle has implications for the work that the field does on the particle. As a consequence, if only the magnetic field acts on the particle, its kinetic energy will \qquad	
ANSWER:	increase over time
	decrease over time
	\bigcirc remain constant
	oscillate
	Correct

Part D
The particle moves in a plane perpendicular to the magnetic field direction as shown in the figure. What is ω, the angular frequency of the circular motion?

Hint D. 1 How to approach the problem
Hint not displayed

Hint D. 2 Determine the magnetic force
Hint not displayed

Hint D. 3 Determine the acceleration of the particle
Hint not displayed

Hint D. 4 Express the angular speed in terms of the linear speed Hint not displayed

Express ω in terms of q, m, and B_{0}.

ANSWER: \quad| $\omega=\frac{q B_{0}}{m}$ |
| ---: |
| Correct |

equations of force and motion, it canceled out. This implies that the frequency (but not the linear speed) of the particle is invariant with orbit size.

The first particle accelerator built, the cyclotron, was based on the fact that the frequency of a charged particle orbiting in a uniform field is independent of the radius. In the cyclotron, radio frequency voltage is applied across a gap between the two sides of the conducting vacuum chamber in which the protons circulate owing to an external magnetic field. Particles in phase with this voltage are accelerated each time they cross the gap (because the field reverses while they make half a circle) and reach energies of millions of electron volts after several thousand round trips.

Part B

Determine the direction of the force on the charge due to the magnetic field.

Hint B. 1 Determining the direction of a magnetic force

ANSWER:
\vec{F} points out of the page.
(- \vec{F} points into the page.
\vec{F} points neither into nor out of the page and $\vec{F} \neq 0$.
$\vec{F}=0$.

Correct

Part C

Determine the direction of the force on the charge due to the magnetic field. Note that the charge is negative.

Problem 33.27

An electron moves in the magnetic field $\vec{B}=0.540 \hat{i} \mathrm{~T}$ with a speed of $1.20 \times 10^{7} \mathrm{~m} / \mathrm{s}$ in the directions shown in the
figure. For each, what is magnetic force \vec{F} on the electron?
(a)

(b)

Part A

Express vector \bar{F} in the form of F_{x}, F_{y}, F_{z}, where the \mathbf{x}, \mathbf{y}, and \mathbf{z} components are separated by commas

```
ANSWER: }\vec{F}=\vec{0,0,-1.04\times1\mp@subsup{0}{}{-12}}\textrm{N
```

Part B
Express vector \vec{F} in the form of F_{x}, F_{y}, F_{z}, where the \mathbf{x}, \mathbf{y}, and \mathbf{z} components are separated by commas.
ANSWER: $\vec{F}=0,-7.33 \times 10^{-13},-7.33 \times 10^{-13} \mathrm{~N}$

Problem 33.33

The Hall voltage across a $1.00-\mathrm{mm}$-thick conductor in a 0.900 T magnetic field is $3.2 \mu \mathrm{~V}$ when the current is 18.0 A .

Part A
What is the charge-carrier density in this conductor?
ANSWER: $\begin{gathered}\mathbf{3 . 1 6 \times 1 0} \\ \text { Correct }\end{gathered} \mathrm{m}^{-3}$

Score Summary:
Your score on this assignment is 100.3%.
You received 14.04 out of a possible total of 14 points.

[^0]: Problem 32.38
 You've made the finals of the Science Olympics! As one of your tasks, you're given 2.2 g of aluminum and asked to make a

